
Resilience
Dr Thomas Boltze, Head of Cloud and Engineering Excellence

A question of mindset, culture, and partnerships









human error
people make mistakes, sometimes leading to large scale outages

incomplete monitoring
monitoring for errors is incomplete, alerting too late or too little
 

faulty deployments
rolling deployments resulted in errors that the monitoring did not 
catch, which then blew up services across multiple regions



resilience
“the capacity to withstand or to recover quickly from difficulties”

“The ability of an information system to continue to: (i) operate under adverse conditions or stress, even if in a degraded 
or debilitated state, while maintaining essential operational capabilities; and (ii) recover to an effective operational 

posture in a time frame consistent with mission needs.” [NIST]



what does good look like?



can your systems withstand AZ / datacenter / region failures?

can your systems withstand loss of core services?

do you run game days?

do you run chaos monkey – in production?

do you stress test your systems on a regular basis?

are your change sets small?



mindset
“a person’s or group’s way of thinking and their opinions”



A Journey

three availability zones
microservices, events
containers & 
orchestration
RDS (multi-az)
monitoring, alerting …

the beginning testing

full load on the 
system
kill AZ
measure impact
fix findings

real world

real thermal event
took down one AZ
system kept on 
processing payments

next

multi-region
multi-cloud
more failure scenarios



culture
“the set of behaviours that get rewarded, tolerated or sanctioned”



dev qa sec sre ops

somebody else’s problem



observability
“real-time, everyone, everything”



curiosity
“an eager desire to learn”



everything as code
“don’t try this without”



focus
“don’t be like Berlin”



shared responsibility model
“every party plays a role in resiliency”



Payments Hub

Consume at 
arm’s length

Self-hosted, 
specific guarantees

SaaS, very close 
partnership



worked for us
blameless post-mortems

design for failure
democratise tooling

automate testing
involve everyone

understand past failures
speak up

iterate often
focus

did not
hunt for the guilty person
isolate in one department
build your own tooling
use method hope
“not my problem”
siloe’d thinking
change approval boards



Understand your current capabilities, 
mindset and culture

Invest in training & learning

Learn the tools

Allow your teams to design for failure

Automate everything

every incident is 
an opportunity to learn



thank you!


