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Trino (formerly known as Presto)

• Fast distributed SQL query engine for big data analytics
• Open sourced at Facebook in 2013 as Presto
• Renamed to Trino in late 2020
• Used by hundreds of organizations all over the world
• Runs on a cluster of machines



Starburst Galaxy
Trino software-as-a-service
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Galaxy architecture

CRDB

Trino clusters

Trino Plane in Azure US West

Trino clusters

Trino Plane in GCP Asia South

Trino clusters

Trino Plane in a cloud region

Control Plane
AWS US West

Control Plane
AWS US East

Control Plane
AWS Asia South



Why CockroachDB?
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Reliability

• No downtime or data loss
• Always available, even if we lose a cloud zone or region
• Support customers in regions all around the world



Development

• Standard SQL semantics
• Unique indexes, constraints, foreign keys, etc.
• Easy for engineers to understand
• Robust against bugs in application code
• Serializable transactions prevents errors



Operations

• Managed service — let someone else run it
• Allow evolution as we add new features
• Online schema changes
• Transparently scales to larger clusters



How we use CockroachDB

14



Usage: What is the data?

• Trino cluster management
• Users and permissions
• Metastore for user data
• Trino query history (~1000x larger than other data)
• Transient state for stateless services



Global tables

• Instant reads from anywhere
• High latency writes
• Per-statement latency for writes from non-primary region
• Forward writes to service in primary region
• Perform forwarding at service API layer



Schema migrations
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Using Flyway with CockroachDB

• Existing CockroachDB support is outdated and broken
• Run each migration in separate transaction
• Update flyway_schema_history table within transaction
• New version: https://github.com/electrum/flyway-cockroachdb



Beware of mixing DML with DDL

> CREATE TABLE abc (x int);
> INSERT INTO abc VALUES (3), (4), (null);
> BEGIN;
OPEN> UPDATE abc SET x = x * 2 WHERE x > 0;
OPEN> ALTER TABLE abc ALTER COLUMN x SET NOT NULL;
OPEN> COMMIT;
ERROR: transaction committed but schema change aborted with 
error: (23514): validation of NOT NULL constraint failed: 
validation of CHECK "x IS NOT NULL" failed on row: x=NULL, 
rowid=...



Beware of mixing DML with DDL

> SELECT * FROM abc;
   x
--------
     6
     8
  NULL
(3 rows)



Don't be clever with transactions

> CREATE TABLE abc (x int NOT NULL);
> INSERT INTO abc VALUES (5);
> BEGIN;
OPEN> ALTER TABLE abc ADD COLUMN y int NOT NULL DEFAULT 0;
OPEN> ALTER TABLE abc ALTER COLUMN y DROP DEFAULT;
OPEN> COMMIT;
ERROR: transaction committed but schema change aborted with 
error: (23502): null value in column "y" violates not-null 
constraint



Rules for migrations

• DDL that interacts with existing data can fail
• Avoid mixing DML with DDL
• Mixing is only safe if the DDL cannot fail
• Only one ALTER TABLE for same table per transaction
• Use separate transactions unless atomicity is required



Thank you!


