
Build better.
Dream bigger.
#RoachFest22

How we use CockroachDB to
power Starburst Galaxy

David Phillips, CTO

Trino (formerly known as Presto)

• Fast distributed SQL query engine for big data analytics
• Open sourced at Facebook in 2013 as Presto
• Renamed to Trino in late 2020
• Used by hundreds of organizations all over the world
• Runs on a cluster of machines

Starburst Galaxy
Trino software-as-a-service

4

Starburst Galaxy

Starburst Galaxy

Starburst Galaxy

Starburst Galaxy

Galaxy architecture

CRDB

Trino clusters

Trino Plane in Azure US West

Trino clusters

Trino Plane in GCP Asia South

Trino clusters

Trino Plane in a cloud region

Control Plane
AWS US West

Control Plane
AWS US East

Control Plane
AWS Asia South

Why CockroachDB?

10

Reliability

• No downtime or data loss
• Always available, even if we lose a cloud zone or region
• Support customers in regions all around the world

Development

• Standard SQL semantics
• Unique indexes, constraints, foreign keys, etc.
• Easy for engineers to understand
• Robust against bugs in application code
• Serializable transactions prevents errors

Operations

• Managed service — let someone else run it
• Allow evolution as we add new features
• Online schema changes
• Transparently scales to larger clusters

How we use CockroachDB

14

Usage: What is the data?

• Trino cluster management
• Users and permissions
• Metastore for user data
• Trino query history (~1000x larger than other data)
• Transient state for stateless services

Global tables

• Instant reads from anywhere
• High latency writes
• Per-statement latency for writes from non-primary region
• Forward writes to service in primary region
• Perform forwarding at service API layer

Schema migrations

17

Using Flyway with CockroachDB

• Existing CockroachDB support is outdated and broken
• Run each migration in separate transaction
• Update flyway_schema_history table within transaction
• New version: https://github.com/electrum/flyway-cockroachdb

Beware of mixing DML with DDL

> CREATE TABLE abc (x int);
> INSERT INTO abc VALUES (3), (4), (null);
> BEGIN;
OPEN> UPDATE abc SET x = x * 2 WHERE x > 0;
OPEN> ALTER TABLE abc ALTER COLUMN x SET NOT NULL;
OPEN> COMMIT;
ERROR: transaction committed but schema change aborted with
error: (23514): validation of NOT NULL constraint failed:
validation of CHECK "x IS NOT NULL" failed on row: x=NULL,
rowid=...

Beware of mixing DML with DDL

> SELECT * FROM abc;
 x

 6
 8
 NULL
(3 rows)

Don't be clever with transactions

> CREATE TABLE abc (x int NOT NULL);
> INSERT INTO abc VALUES (5);
> BEGIN;
OPEN> ALTER TABLE abc ADD COLUMN y int NOT NULL DEFAULT 0;
OPEN> ALTER TABLE abc ALTER COLUMN y DROP DEFAULT;
OPEN> COMMIT;
ERROR: transaction committed but schema change aborted with
error: (23502): null value in column "y" violates not-null
constraint

Rules for migrations

• DDL that interacts with existing data can fail
• Avoid mixing DML with DDL
• Mixing is only safe if the DDL cannot fail
• Only one ALTER TABLE for same table per transaction
• Use separate transactions unless atomicity is required

Thank you!

