
Build better.
Dream bigger.
#RoachFest22

CockroachDB architecture
Ben Darnell, Chief Architect and Co-Founder of Cockroach Labs

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack
● Other Topics

Which came first?
The table, or the index?

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack
● Other Topics

Scalable SQL

Additional Design Goals

SQL
Familiar interface
Broad feature set

Tool compatibility

Transactions
Important for users and internal mechanisms

Highest level of isolation
Optimized for distributed usage

Distribution No node holds all the data
Place data for efficiency and other requirements

Replication Hardware faults are inevitable at scale
Fast, seamless recovery

Storage Efficiently manage data on disk

Design Trade-Offs

Consistency over Availability Guarantee consistency at all costs.
In CAP theorem parlance, CockroachDB is aCP system.

Favor Transactional Workloads Transactional workloads are favored over other types of workloads,
such as analytics.

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack
● Other Topics

One executable. Three roles

● SQL Gateways parse and plan
● SQL Executors run the query
● KV nodes hold the data Node 2

Node 3

Node 4Node 1

SQL GatewayPostgreSQL
Protocol

RPC RPC

RPC RPC

RPC

RPC

SQL Executor

KV

SQL Gateway

SQL Executor

KV

SQL Gateway

SQL Executor

KV

SQL Gateway

SQL Executor

KV

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack
● Other Topics

CockroachDB Software Stack

SQL Layer
Process PostgreSQL wire protocol requests

Parse and optimize SQL statements
Map SQL to key-value operations

Transaction Layer
Enforce ACID semantics and serializable isolation

Optimize for distributed transactions
Handle transaction conflicts

Distribution Layer Manage ranges and leases
Provide multi-region support

Replication Layer Replicate data while ensuring consistency
Achieve consensus using the Raft protocol

Storage Layer Implements key-value storage using LSM trees (Pebble)
MVCC, caching, garbage collection

SQL
Gateway

SQL
Executor

KV

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack

• SQL Layer
• Transaction Layer
• Distribution Layer
• Replication Layer
• Storage Layer

● Other Topics

Components

● SQL API: SQL user interface, ANSI SQL standard, ACID-semantic transactions
● Parser: Converts SQL text into an abstract syntax tree (AST)
● Cost-based optimizer: Converts the AST into an optimized logical query plan
● Physical planner:

Converts the logical query plan into a physical query plan for execution by one or
more nodes in the cluster

● SQL execution engine:
Executes the physical plan by making read and write requests to the underlying
key-value store

SQL

SQL Transaction

KV
Operations

SQL
Queries

See SQL Layer documentation

https://www.cockroachlabs.com/docs/stable/architecture/sql-layer.html

Cost-Based Optimizer

After a SQL query parsed into an abstract syntax tree (AST), the cost-based optimizer seeks the lowest
cost for a query, usually related to time.

Cost is roughly calculated by:

● Time: estimating how much time each node will use to process all results
● Data Flows: modeling how data flows through the query plan

The most important factor in determining the quality of a plan is cardinality (i.e., the number of
rows). The fewer rows each SQL operator needs to process, the faster the query will run.

Table statistics are used to find the optimal execution plan. These are collected periodically or when
table data changes significantly.

SQL

See Cost-Based Optimizer documentation

https://www.cockroachlabs.com/docs/v22.1/cost-based-optimizer

Physical Planning

Physical planning determines which nodes will participate in the execution of the query.

This allows some computations are performed closer to where the data is stored.

SQL operators behave identically whether planned in gateway or distributed mode.

Small number of rows = executed on gateway node
Larger number of rows = distributed across multiple nodes

SQL

Logical Plan Physical Plan

Node 1

Node 2

↻ Query Execution

↻ Query ExecutionGateway Node

Query plan distributed across multiple nodes

Distributed SQL (DistSQL)

DistSQL is an approach that moves computation closer to where the data is stored, enabling:
1. Remote-side filtering
2. Remote-side updates and deletes
3. Distributed SQL operations, such as joins, aggregation and sorting

SQL

See Distributed SQL (DistSQL) RFC

SELECT id
FROM inventory
WHERE price < 5.00;

Node 2

CockroachDB Process

Node 1

CockroachDB Process

Node 3

CockroachDB Process

Gateway Node

Leaseholder Nodes

ID Name Price
1 Bat 1.11
2 Ball 2.22
3 Glove 3.33
4 Hat 4.44

ID Name Price
1 Bat 1.11
2 Ball 2.22

+10k rows
w/ price >= 5.00

ID Name Price
10003 Glove 3.33

10004 Hat 4.44

+10k rows
w/ price >= 5.00

Result:
2 row

Result:
2 rows

Result:
4 rows

Range 1

Range 2

https://github.com/cockroachdb/cockroach/blob/master/docs/RFCS/20160421_distributed_sql.md

Vectorized Execution Engine

The vectorized execution engine converts row-oriented data into in-memory column-oriented
structures.

This dramatically improves performance by processing each component of a query plan on
type-specific batches of column data.

SQL

See Vectorized Execution Engine documentation

SELECT sum(price)
FROM inventory;

Node 2

CockroachDB Process

Node 1

CockroachDB Process

Node 3

CockroachDB Process

Gateway Node

Leaseholder Nodes

↻ Vectorized
Processing

↻ Vectorized
Processing

ID Name Price
1 Bat 1.11
2 Ball 2.22
3 Glove 3.33
4 Hat 4.44

ID Price
1 1.11
2 2.22

ID Name Price
1 Bat 1.11
2 Ball 2.22

ID Price
3 3.33
4 4.44

ID Name Price
3 Glove 3.33
4 Hat 4.44

sum()

sum()

Result:
7.77

Result:
3.33

Result:
11.00

Row format Column format

Range 1

Range 2

https://www.cockroachlabs.com/docs/v22.1/vectorized-execution.html

Converting SQL to Key-Values

Each entry in the KV store has the following structure:

/Table/<table-id>/<index-id>/<index-key-value>/<column-family>

SQL

CREATE TABLE inventory (
 id INT PRIMARY KEY,
 name STRING,
 price FLOAT);

ID Name Price

1 Bat 1.11

2 Ball 2.22

3 Glove 3.33

Key (pretty) Key (encoded) Value (pretty)

/Table/inventory/primary/1/primary /Table/62/0/1/0 “Bat”,1.11

/Table/inventory/primary/2/primary /Table/62/0/2/0 “Ball”,2.22

/Table/inventory/primary/3/primary /Table/62/0/3/0 “Glove”,3.33

See Encoding tech note

https://github.com/cockroachdb/cockroach/blob/master/docs/tech-notes/encoding.md

Column FamiliesSQL

CREATE TABLE inventory (
 id INT PRIMARY KEY,
 name STRING,
 price FLOAT,
 photo BLOB
 FAMILY f1 (name, price),
 FAMILY f2 (photo)
);

ID Name Price Photo

1 Bat 1.11 /xff/xd8 …

Key Value

/Table/inventory/primary/1/f1 “Bat”,1.11

/Table/inventory/primary/1/f2 /xff/xd8 …

See Column Family RFC

Column Families are used to store groups of columns in separate KV
entries.

Infrequently used large columns can be excluded from queries
improving cache performance.

Concurrent operations on separate column families do not interfere
with each other.

https://github.com/cockroachdb/cockroach/blob/master/docs/RFCS/20151214_sql_column_families.md

Non-Unique IndexesSQL

CREATE TABLE inventory (
 id INT PRIMARY KEY,
 name STRING,
 price FLOAT,
 INDEX name_idx(name)
);

The key for a non-unique index includes the table and index name,
the key-value and the primary key-value.

There is no “value” by default.

ID Name Price

1 Bat 1.11

2 Ball 2.22

3 Glove 3.33

Key Value

/Table/inventory/name_idx/”Bat”/1 ⌀

/Table/inventory/name_idx/”Ball”/2 ⌀

/Table/inventory/name_idx/”Glove”/3 ⌀

Unique IndexesSQL

CREATE TABLE inventory (
 id INT PRIMARY KEY,
 name STRING,
 price FLOAT,
 UNIQUE INDEX name_uidx(name)
);

For a unique index, the KV value defaults to the value of the
primary key.

ID Name Price

1 Bat 1.11

2 Ball 2.22

3 Glove 3.33

Key Value

/Table/inventory/name_uidx/”Bat” /1

/Table/inventory/name_uidx/”Ball” /2

/Table/inventory/name_uidx/”Glove” /3

Inverted IndexesSQL

CREATE TABLE inventory (
 id INT PRIMARY KEY,
 data JSONB,
 price FLOAT,
 INVERTED INDEX data_idx(data)
);

Inverted Indexes allow indexed searches into values included
in arrays or JSON documents.

Key-values include the JSON path and value together with
the primary key.

ID Data

1 {“name”: “Bat”, “price”: 1.11}

2 {“name”: “Ball”, “price”: 2.22}

Key Value

/Table/inventory/data_idx/name/”Bat”/1 ⌀

/Table/inventory/name_idx/price/1.11/1 ⌀

/Table/inventory/data_idx/name/”Ball”/2 ⌀

/Table/inventory/name_idx/price/2.22/2 ⌀

Covering Indexes - Storing ClauseSQL

CREATE TABLE inventory (
 id INT PRIMARY KEY,
 name STRING,
 price FLOAT,
 INDEX name_sidx(name)
 STORING (price)
);

The STORING clause can be used to store additional columns in the
value part of the KV index structure.

This can improve the performance of queries on columns that are in
the STORING clause, at a small cost to write performance and
storage space.

ID Name Price

1 Bat 1.11

2 Ball 2.22

Key Value

/Table/inventory/name_sidx/”Bat”/1 1.11

/Table/inventory/name_sidx/”Ball”/2 2.22

Online Schema Changes

CockroachDB performs schema changes using a protocol that allows tables to remain online
(i.e., able to serve reads and writes) during the schema change.

This protocol allows different nodes in the cluster to asynchronously transition to a new table
schema at different times.

The schema change protocol decomposes each schema change into a sequence of
incremental changes that will achieve the desired effect.

SQL

See Online Schema Changes documentation

https://www.cockroachlabs.com/docs/v22.1/online-schema-changes

Key Points

● The SQL layer converts SQL queries into
optimized logical query plans.

● Logical query plans are converted into
physical plans that can be executed on
any node.

● DistSQL and the vectorized execution
engine parallelize execution.

● SQL is converted to key-values based on
the underlying KV system.

● Schema changes can be applied while
continuing to serve read/write requests.

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack

• SQL Layer
• Transaction Layer
• Distribution Layer
• Replication Layer
• Storage Layer

● Other Topics

Functions / Responsibilities

● Receives incoming KV operations generated by the SQL Layer
● Ensures the atomicity of transactions

○ Transactions are either committed or aborted. There is no middle state.
● Maintains serializable isolation from other transactions

○ Transactions are run concurrently but appear as if only one was run at a time.
● Sends KV Requests to the Distribution Layer

Transaction

SQL Transaction

KV
Operations

SQL
Queries

Distribution

KV
Requests

High-Level Phases

● Writes and Reads (Phase 1)
○ For writes, locks (e.g., write intents) are

created and transaction records are
established.

○ For reads and writes, transaction conflicts
are negotiated.

● Commits (Phase 2)
○ Check transaction record
○ Handle aborted transactions
○ Change record state to STAGING

● Cleanup (Phase 3 - asynchronous)
○ Move transaction state to COMMITTED
○ Resolves and deletes write intents

Transaction

Write
(phase 1)

Commit
(phase 2)

Locks
Transaction Record

PENDING

Cleanup
(phase 3)

Transaction Record
STAGING

Transaction Record
COMMITTED

Typical Write Operation

Write Intents

Values that are written in a provisional state to the storage
layer.

The combination of a replicated lock and a replicated
provisional value are recorded.

Operations that encounter write intents look up the status of
the transaction in the transaction record.

Transaction

Key Timestamp Value

A<intent> 500 “proposed”

A 400 “current”

A 322 “old”

A 50 “original”

Write Intent in MVCC

Transaction Records

Transaction records are used to track the progress or transactions.
They are written to the same range as the first key in the
transaction.

Transactions records can have the following states:

● PENDING: transaction is still in progress
● STAGING: used during parallel commits to indicate that a

transaction may be committed
● COMMITTED: transaction is committed
● ABORTED: transaction was aborted

Transaction

Status:
PENDING

INSERT INTO inventory
(name, price)
VALUES ('Bat', 1.11),
('Ball', 2.22)

Node 2

CockroachDB Process

Node 1

CockroachDB Process

Node 3

CockroachDB Process

Gateway Node

Transaction
Record

Range 1

Range 2

Write Intent

Write Intent

Concurrency Control

The concurrency manager sequences incoming requests and provides isolation between
transactions.

● Latch Manager
○ Sequences incoming requests and provides isolation between those requests

● Lock table
○ Provides both locking and sequencing of requests (in concert with the latch

manager)
○ Per-node, in-memory data structure
○ Pulls in information about external locks, such as write intents, when they are

discovered
● Uses pessimistic locking via SQL using the SELECT for UPDATE statement

○ Can increase throughput and decrease tail latency for contended operations

Transaction

Time and Hybrid Logical Clocks

The gateway node picks a timestamp for the
transaction using HLC time.

When nodes send requests to other nodes, they
include the timestamp generated by their local
HLCs.

When nodes receive requests, they inform their
local HLC of the timestamp supplied with the event
by the sender.

These are used to ensure that the transaction
reading the data is at an HLC time greater than the
value itʼs reading (i.e., the read always happens
“after” the write).

Transaction

Physical Component
(close to wall time)

Logical Component
(used to distinguish between

events with the same physical
component)

Hybrid Logical Clock (HLC)

Node 1

CockroachDB Process

HLC-T1

Node 1

CockroachDB Process

HLC-T2
HLC-T1

read HLC-T1
>

HLC-T2

Clock Synchronization

To ensure serializability of transactions, node
clocks must be reasonably synchronized.

If nodeʼs clock gets too far out of sync with at least
half the other nodes, the CockroachDB process
will crash itself.

In 22.1, the default max offset is 500ms, although
customers often lower this to 250ms or less.

It is recommended that all nodes are
synchronized to the same time source (or one that
implements leap second smearing in the same
way).

Transaction

Causally related transactions committing out of order due to
unsynchronized clocks.

See Living Without Atomic Clocks blog post

https://www.cockroachlabs.com/blog/living-without-atomic-clocks/

Closed Timestamps

Each range tracks a closed timestamp, the time at
which no writes can occur at or below.

The closed timestamp is advanced continuously on
the leaseholder and sent to its replicas.

Generally, this occurs a few seconds in the past.

This allows replicas to serve reads at or below the
closed timestamp for the range (used in follower
reads).

Transaction

Node 1

CockroachDB Process

See An Epic Read on Follower Reads - Closed Timestamps

Node 2

CockroachDB Process

Node 3

CockroachDB Process

Leaseholder

wts: 10
cs: 5

wts: 6
cs: 5

wts: 11
cs: 8

wts: 14
cs: 9

wts: 15
cs: 11

wts: 10
cs: 5

wts: 6
cs: 5

wts: 11
cs: 8

wts: 14
cs: 9

wts: 10
cs: 5

wts: 6
cs: 5

Write timestamps (wts) and closed timestamps (cs) sent via raft
commands. Green entries are known to be committed. The write

timestamp must be higher than the closed timestamp in the
previous entry.

Replica

Replica

https://www.cockroachlabs.com/blog/follower-reads-stale-data/#implementation-of-follower-reads

Transaction Pipelining

Transactional writes are pipelined when being
replicated and when being written to disk. This
dramatically reduces the latency of transactions
that perform multiple writes.

Write intents are replicated from leaseholders in
parallel, so the waiting all happens at the end, at
transaction commit time.

Transaction

See Transaction Pipelining documentation

(see diagram on next slide)

https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer.html#transaction-pipelining

Transaction PipeliningTransaction

See Transaction Pipelining documentation

Leaseholder

Node 2
Replica

Node 3
Replica

Node 5
Replica

Node 6
Replica

BEGIN;
INSERT INTO inventory
(name, price)
VALUES ('Bat', 1.11);
INSERT INTO inventory
(name, price)
VALUES (Ball, 2.22);
COMMIT;

Gateway
Node

2

3

8

7

Node 1

CockroachDB Process

Range 1

Node 4

CockroachDB Process

Range 2

1

6

11

4

5 9

10

12

13

Leaseholder

Leaseholder

12

https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer.html#transaction-pipelining

Parallel Commits

Parallel Commits are part of an optimized atomic commit
protocol that cuts the commit latency of a transaction in
half, from two rounds of consensus down to one.

Under this atomic commit protocol, the transaction
coordinator can return to the client eagerly when it knows
that the writes in the transaction have succeeded.

It introduced the transaction status of STAGING and the
recording of in-flight writes.

This allows the transaction record to be written as soon as
all values are known, in parallel with individual writes.

Transaction

Transaction Record
—
Status: STAGING
InFlightWrite: [“write1”,
“write2”, “write3”]

(see diagram on next slide)

See Parallel Commits documentation and blog post

https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer.html#parallel-commits
https://www.cockroachlabs.com/blog/parallel-commits/

Parallel CommitsTransaction

See Parallel Commits documentation and blog post

Without Parallel Commits
Transaction record can only be written AFTER the

individual writes are committed

With Parallel Commits
Transaction record is written as soon as all values are
known (after COMMIT), even if individual writes have

not yet returned

https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer.html#parallel-commits
https://www.cockroachlabs.com/blog/parallel-commits/

Transaction Conflicts

When a transaction encounters a write intent, the following conflicts can occur:

● Write/write, where two PENDING transactions create write intents for the same key
● Write/read, where a read encounters an existing write intent with a timestamp less

than its own.

Additionally, the following types of conflicts that do NOT involve encountering a write
intent can arise:

● Write after read, when a write with a lower timestamp encounters a later read.
● Read within uncertainty window, when a read encounters a value with a higher

timestamp but itʼs ambiguous whether the value should be in the future or in the
past of the transaction because of possible clock skew.

Transaction

Key Points

● The transaction layer ensures
ACID-compliance of transactions.

● Concurrency control mechanisms ensure
the proper sequencing and isolation of
transactions.

● Optimizations, such as pipelining and
parallel commits reduce latency.

● Conflicts can be resolved internally or
through client retries.

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack

• SQL Layer
• Transaction Layer
• Distribution Layer
• Replication Layer
• Storage Layer

● Other Topics

Distribution Layer

● Receives incoming KV requests from the transaction layer on the same node
● Data is stored in a monolithic sorted map of key-value pairs

○ Describes all data in the structure, including its location
○ Provides simple lookups and efficient scans

● Distribution layer breaks data into ranges of approximately 512 MB
○ Keeps the number of ranges per node manageable
○ Keeps the ranges distributed throughout the cluster but still representable as

a single logical entity
● Identifies which nodes should receive the request, then sends the request to the

proper nodeʼs replication layer

Distribution

Transaction Distribution

KV
Requests

Replication

Requests

Meta Ranges

● Distribution of ranges is stored in global
keyspaces meta1 and meta2

○ meta1 can be considered a “range
of ranges” lookup that points to the
node holding the meta2 range

○ The meta2 range points to the
nodes holding every copy of every
range within the “range of ranges”

● Gossip protocol is used to share
ephemeral information between nodes

○ Maintains eventually consistent KV
map

○ Used for bootstrapping (meta0)

Distribution

Range Splits

● CockroachDB attempts to keep a range to less
than 512 MB

○ Balance the ease of operations on a range
(e.g., splitting, moving) with the
bookkeeping overhead for each range.

● Ranges are split when the max size is exceeded
○ Results in 2 ranges of the same size

● Ranges can be split based on load
○ kv.range_split.by_load must be

enabled
○ Queries per second must exceed the

kv.range_split.load_qps_thres
hold

○ The split must result in a better load
distribution

● Ranges can also be merged
Range split due to size

Distribution

Multi-Region Distribution

● Geo-partitioning allows data to be located within specific geographic regions
○ May be desirable from a latency perspective
○ Can be used for data sovereignty

● Multi-region configuration controls how data is distributed across regions
○ Cluster regions: geographic region specific to a given node at start time
○ Regions: may have multiple zones
○ Databases within a cluster are assigned to one or more regions, one of these

is the primary region.
○ Tables within a database can have locality rules (global, regional by table,

regional by row) that determines how data is distributed
○ Survival goals dictate how many simultaneous failures a database can

gracefully tolerate
● Survival Goals

○ Zone: database will remain fully operational when a zone goes down
(default)

○ Region: database will remain fully operational when a region goes down

Distribution

Key Points

● The distribution layer maintains the
monolithic key-value map that locates
data throughout the cluster.

● Data is split up into ranges of
approximately 512 MiB.

● Ranges can be split or merged as they
grow larger or smaller.

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack

• SQL Layer
• Transaction Layer
• Distribution Layer
• Replication Layer
• Storage Layer

● Other Topics

Replication Layer

● Receives requests from and sends responses to the distribution layer
● Provides high availability

○ Multiple copies of the data ensures availability when infrastructure failures occur
○ Considered multi-active (as compared to active-passive or active-active) since all

replicas can serve data
● Maintains consistency across all ranges in the cluster

○ Each range is replicated independently of other ranges
○ Uses the Raft (distributed consensus) protocol to guarantee consistency

● Writes accepted requests to the storage layer

Replication

Distribution Replication Storage

Raft Consensus Protocol

To ensure that data is replicated correctly, the replication layer
uses the raft consensus protocol.

Raft leverages the following components:

● Raft Group: Each range has its own raft group, a minimum
of 3 nodes.

● Raft Leader: All proposed changes go through a single
elected leader.

● Raft Log: All changes are recorded as an immutable log.

Leader election occurs when a node fails to receive a heartbeat
from the leader.

Snapshots can be used to up-replicate to new nodes or enable
a lagging node to quickly catch-up to the raft log.

See The Secret Lives of Data for a high-level Raft demo.

Raft
group

RAFT LEADER

FOLLOWER

FOLLOWER

Raft
group

RAFT LEADER

INSERT INTO DOGS
VALUES (sunny, ozzie);

Replication

http://thesecretlivesofdata.com/raft/

Raft and Leaseholders

● Consensus reads are expensive.
● Rather than use consensus reads, CockroachDB has the concept of a leaseholder

that coordinates the following actions:
○ Performs strong reads (i.e., current / non-stale)
○ Proposes changes to the Raft Leader

● CockroachDB will attempt to elect a leaseholder who is also a Raft leader.
○ This reduces latency for proposing changes to the Raft leader since it will be

on the local node.

Replication

Key Points

● The replication layer ensures that data is
replicated with consistency across the
cluster.

● Raft is the distributed consensus protocol
used by the replication layer.

● Raft leaders are typically co-located on
the same node as leaseholder to reduce
latency for proposed changes.

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack

• SQL Layer
• Transaction Layer
• Distribution Layer
• Replication Layer
• Storage Layer

● Other Topics

Storage Layer

● Serves successful reads and writes from the replication layer
● Physical implementation of the KV storage engine
● Uses the Cockroach Labs developed Pebble storage engine

○ Open source KV store
○ Inspired by LevelDB and RocksDB
○ Maintain primarily by Cockroach labs
○ Optimized for CockroachDB

Storage

Log-Structured Merge (LSM) Trees

● Pebble implements a log-structured merge tree
● File format is a Sorted String Table (SSTable)
● SSTables exist on multiple levels, numbered L0 to L6

○ L0 (MemTable) contains an unordered set of SSTables,
which receives new values.

○ Compaction: Periodically, SSTables are compacted into
larger consolidated stores in the lower levels

○ L1 to L6: SSTables are ordered and nonoverlapping so
only one SSTable per level could possibly hold a given
key

● SSTables are internally sorted and indexed
● Writes are fast since the SSTables are append-only
● Write-ahead log (WAL) ensures that data is not lost in node

failure

Storage

Log-Structured Merge (LSM) - Writes

1. Writes from higher CRDB layers are applied
to the write-ahead log (WAL)

2. Then applied to the MemTable
3. Once MemTable reaches a certain size, it is

flushed to disk to create a new SSTable
4. WAL can be purged after the MemTable is

flushed to disk
5. Multiple SSTable are routinely merged

(compacted) into larger SSTables

LSM Writes

Storage

SSTables & Bloom Filters - LSM Reads

● SSTables are indexed but …
○ Searching through every SSTable index

can be expensive with a large number
of tables

○ Bloom Filters reduce number of lookups
● Bloom Filters

○ Compact and quick-to-maintain
structure

○ Indicate whether an SSTable might
contains a key

○ Indicate whether an SSTable does not
contain a key (can be skipped)

LSM Reads. First, MemTable is checked, then the
bloom filters from the L0 layer down. If a bloom filter
returns a possible match, the index is examined and

result returned

Storage

Multi-Version Concurrency Control (MVCC)

● CockroachDB implements multi-version
concurrency control (MVCC)
○ Readers can get a consistent view of

information even as it is being modified
● Multiple versions of any row are maintained by

the system
○ Transactions determine which version of

the row to read based on their timestamp
and the timestamp of any concurrent
transactions

Storage

Delete and Updates

● SSTables are immutable
● Inserts and Updates

○ New values are inserted and added to the MemTable (L0) and the write-ahead log
(WAL) before being flushed to disk as SSTables.

○ When the system retrieves records, it reads from youngest to oldest, so the most recent
values is retrieved.

● Deletes
○ Similar to inserts and updates, deletes write a new value, called a tombstone marker,

to the MemTable (L0), which is later flushed to disk as an SSTable.
● Compaction

○ This reduces fragmentation of rows across SSTables.
○ Tombstone markers are retained until they are compacted to the base level L6.

● Garbage Collection
○ Older records are removed after the gc.ttlseconds elapses unless covered by protected

timestamps (e.g., part of a backup job process).

Storage

Key Points

● Data is stored as key-value pairs on disk
using the Pebble storage engine.

● Pebble uses a log structured merge (LSM)
tree to manage data storage.

● SSTs are the on-disk representation of
sorted lists of key-value pairs.

● Garbage collection regularly collects
MVCC values to reduce the size of data on
disk.

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack
● Other Topics

• Admission Control
• Change Data Capture
• Monitoring and Alerting

Admission Control

● Maintains cluster performance and availability when some nodes experience high
load.

● Request and response operations are sorted into work queues by priority, giving
preference to higher priority operations.

● Acts per-node or per-store
● Manages the following resources:

○ CPU (via running Goroutines)
○ Store health (Pebble’s L0 sub-levels and file count)

● NOT managed:
○ Memory
○ Disk bandwidth (e.g., IOPS)

● Allows full utilization of the resource, but limits over-utilization

See Admission Control documentation and “Hereʼs how CockroachDB keeps your database from collapsing under load”

https://www.cockroachlabs.com/docs/v22.1/admission-control.html
https://www.cockroachlabs.com/blog/admission-control-in-cockroachdb/

Admission Control Queues
Managed queues:

● Requests to KV
○ Consumes CPU
○ Does store reads/writes

● Response from KV
○ Consumes CPU

● Response from DistSQL
○ Consumes CPU

Work is queued until there is an available slot or
token.

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack
● Other Topics

• Admission Control
• Change Data Capture
• Monitoring and Alerting

Change Data Capture

● Efficient, distributed, row-level change
feeds into configurable sinks

● Used for downstream processing such
as reporting, caching, data
warehousing or full-text indexing

● Not a low-latency publish-subscribe
mechanism

● At least once delivery guarantee
● Frequently used to integrate with

analytics platforms
● Support sinks: Kafka, Google Cloud

Pub/Sub, S3, Azure Storage, Google
Cloud Storage, and webhooks

See Change Data Capture documentation and "What is Change Data Capture?" blog post

https://www.cockroachlabs.com/docs/stable/change-data-capture-overview.html
https://www.cockroachlabs.com/blog/change-data-capture/

Agenda

● Introduction
● Design Goals and Tradeoffs
● Cluster Architecture
● CockroachDB Software Stack
● Other Topics

• Admission Control
• Change Data Capture
• Monitoring and Alerting

Monitoring and Alerting

CockroachDB provides a number of monitoring and alerting services.

● DB Console / Admin UI
○ Essential metrics about the cluster’s health, including historical graphs
○ Hot range monitoring
○ SQL query observability and metrics

● Prometheus endpoint
○ Granular time series metrics in a format easy for exporting to prometheus.

● Health endpoints
○ Used to ensure that the node is healthy

● Cluster API
○ REST API provides information about the cluster and nodes

● Logging System
○ Provides detailed logs published via channels to a range of sinks, such as

files, Fluentd-compatible collectors and HTTP network collectors

See Monitoring and Alerting documentation

https://www.cockroachlabs.com/docs/v22.1/monitoring-and-alerting.html

Additional
Resources

● Official documentation
● Cockroach University
● CockroachDB, the Definitive Guide

(OʼReilly book)

https://www.cockroachlabs.com/docs/stable/architecture/overview.html
https://www.cockroachlabs.com/cockroach-university/
https://www.cockroachlabs.com/guides/oreilly-cockroachdb-the-definitive-guide/

Questions?

