
Aurora extract:
DoorDash’s journey from Aurora Postgres to CockroachDB

Alessandro Salvatori, Principal Engineer

DoorDash’s Journey from Aurora Postgres to CRDB

DoorDash’s Journey from Aurora Postgres to CRDB

Survival strategy

❖

Whack-a-mole

❖ Do not block microservices extractions

❖ Vertical federation
➢ extract tables to separate Aurora clusters

❖ Horizontal sharding
➢ migrate to CockroachDB

Hackathon XV

6

Single Primary

Multiple Writers

DoorDash’s Journey from Aurora Postgres to CRDB

Survival strategy

❖

Whack-a-mole

❖ Do not block microservices extractions

❖ Vertical federation
➢ extract tables to separate Aurora clusters

❖ Horizontal sharding
➢ migrate to CockroachDB

DoorDash’s Journey from Aurora Postgres to CRDB

Wake-up call: Friday April 17th 2020

⤇ On 2020/04/17 MainDB peaked at 1.636 MQPS,
leading to hours of downtime

Ain’t no rest for the wicked
⤇ Gained some quick headroom,

then hacked together an extraction tool prototype, ready by end of April

⤇ Made 5 attempts at the first database extraction (Identity),
4 reverted, 1 successful on 2020/05/22

⤇ In the 33 days since then, we extracted 7 databases & 54 tables!!!

DoorDash’s Journey from Aurora Postgres to CRDB

DoorDash’s Journey from Aurora Postgres to CRDB

Wake-up call: Friday April 17th 2020

⤇ On 2020/04/17 MainDB peaked at 1.636 MQPS,
leading to hours of downtime

Ain’t no rest for the wicked
⤇ Gained some quick headroom,

then hacked together an extraction tool prototype, ready by end of April

⤇ Made 5 attempts at the first database extraction (Identity),
4 reverted, 1 successful on 2020/05/22

⤇ In the 33 days since then, we extracted 7 databases & 54 tables!!!

⤇ On 2020/04/17 MainDB peaked at 1.636 MQPS,
leading to hours of downtime

Ain’t no rest for the wicked

DoorDash’s Journey from Aurora Postgres to CRDB

Wake-up call: Friday April 17th 2020

⤇ On 2020/04/17 MainDB peaked at 1.636 MQPS,
leading to hours of downtime

Ain’t no rest for the wicked
⤇ Gained some quick headroom,

then hacked together an extraction tool prototype, ready by end of April

⤇ Made 5 attempts at the first database extraction (Identity),
4 reverted, 1 successful on 2020/05/22

⤇ In the 33 days since then, we extracted 7 databases & 54 tables!!!

⤇ On 2020/04/17 MainDB peaked at 1.636 MQPS,
leading to hours of downtime

Ain’t no rest for the wicked

DoorDash’s Journey from Aurora Postgres to CRDB

A collection of tools
aurora_extract
└── tools
 ├── audit_bigint
 ├── audit_roles
 ├── backfill
 │ ├── args
 │ ├── base
 │ ├── crdb
 │ │ ├── changefeed
 │ │ └── consumer
 │ ├── global
 │ ├── gui
 │ ├── intercom
 │ │ ├── intercom
 │ │ └── proto
 │ ├── main
 │ ├── postgres
 │ │ ├── base
 │ │ └── table_progress
 │ ├── switchover
 │ └── worker
 ├── consistency_checker
 ├── compare_tables
 ├── introspection & SQL code generator
 └── kafka_tailer

Motivation
traditional table ExtractioN

Required changes in EACH CLIENT
several engineers x 6 months
Backfill + Syncing

via double writes + double reads
INCREASED DATABASE LOAD

Not haltable & resumable
labor intensive

ERROR PRONE
Led to inconsistencies difficult to reconcile

TIGHTLY COUPLED SYNCHRONOUS PUSH MODEL

DoorDash’s Journey from Aurora Postgres to CRDB

A collection of tools
aurora_extract
└── tools
 ├── audit_bigint
 ├── audit_roles
 ├── backfill
 │ ├── args
 │ ├── base
 │ ├── crdb
 │ │ ├── changefeed
 │ │ └── consumer
 │ ├── global
 │ ├── gui
 │ ├── intercom
 │ │ ├── intercom
 │ │ └── proto
 │ ├── main
 │ ├── postgres
 │ │ ├── base
 │ │ └── table_progress
 │ ├── switchover
 │ └── worker
 ├── consistency_checker
 ├── compare_tables
 ├── introspection & SQL code generator
 └── kafka_tailer

Motivation
BIGINT UPGRADES

Required TRIGGERS
Lead to several lock pileups

Backfill + Syncing
via aforementioned TRIGGERS

INCREASED DATABASE LOAD
Not haltable & resumable

labor intensive
ERROR PRONE

ATOMIC SWAP WAS OFTEN IMPEDED BY TRIGGERS
TIGHTLY COUPLED SYNCHRONOUS PUSH MODEL

DoorDash’s Journey from Aurora Postgres to CRDB

A collection of tools
aurora_extract
└── tools
 ├── audit_bigint
 ├── audit_roles
 ├── backfill
 │ ├── args
 │ ├── base
 │ ├── crdb
 │ │ ├── changefeed
 │ │ └── consumer
 │ ├── global
 │ ├── gui
 │ ├── intercom
 │ │ ├── intercom
 │ │ └── proto
 │ ├── main
 │ ├── postgres
 │ │ ├── base
 │ │ └── table_progress
 │ ├── switchover
 │ └── worker
 ├── consistency_checker
 ├── compare_tables
 ├── introspection & SQL code generator
 └── kafka_tailer

Motivation
RDS UPGRADES

Far from hitless
Lead to prolonged outages

CLICK & PRAY

9.5⤇9.6 ⤇10⤇11⤇12
One major version at a time

RDS⤇Aurora
One extra step to go from plain RDS to RDS Aurora

DoorDash’s Journey from Aurora Postgres to CRDB

A collection of tools
aurora_extract
└── tools
 ├── audit_bigint
 ├── audit_roles
 ├── backfill
 │ ├── args
 │ ├── base
 │ ├── crdb
 │ │ ├── changefeed
 │ │ └── consumer
 │ ├── global
 │ ├── gui
 │ ├── intercom
 │ │ ├── intercom
 │ │ └── proto
 │ ├── main
 │ ├── postgres
 │ │ ├── base
 │ │ └── table_progress
 │ ├── switchover
 │ └── worker
 ├── consistency_checker
 ├── compare_tables
 ├── introspection & SQL code generator
 └── kafka_tailer

Motivation
CRDB EXTRACTIONS

High odds a revert might be required
NO (in-house) «Prior Art»

DoorDash’s Journey from Aurora Postgres to CRDB

Philosophy: Invest into reusable tools that would automate all of the most tricky bits

⤇ Minimize labor, never go through the same effort again, multiply the velocity at which we can proceed

⤇ Constantly improve and enhance the tool, invest on it and commoditize it via autotuning so any engineer can just fire it up

⤇ Provide a convenient UI that holds your hand during the operation and allows to edit the generated SQL

⤇ Add safeguards and autotuning, minimize the opportunities for human error

⤇ Allow for emergency revert in as few clicks as possible

⤇ Safely operate over production databases, both source and destination

DoorDash’s Journey from Aurora Postgres to CRDB

traditional migration Pitfalls
⤇ Aurora CDC: logical replication, 40% overhead on single primary

not available on 9.6 ⤇ tail changes directly from tables
exposes to the danger of OOM killer

⤇ Triggers (for migrations) or Double Writes (for extractions)
synchronous and tightly coupled, ⤇ poll instead of push
work can’t be suspended and resumed as needed

⤇ Destination CPU overload & Aurora replica lag ⤇ feedback loop and PID controller
⤇ load balance writes across cluster

Source contention and CPU oveload ⤇ load balance reads across read replicas
aurora_replica_status() &
crdb_internal.kv_node_status &
show ranges

⤇ Heavy vacuuming or downtime due to transaction wraparound ⤇ auto-tunable batch size

⤇ Page buffer contention (Aurora) / hopping hotspots (CRDB) ⤇ spread out batches/distant extents

⤇ High CRDB commit latency ⤇ large bandwidth-delay product ⤇ fill BDP via massive parallelism

DoorDash’s Journey from Aurora Postgres to CRDB

Keep It Simple Stupid!
⤇ At any point in time, have a clear Source of Truth

○

○ before the extraction, the SoT is the “old” database and the new database catches up
○

○ after the extraction, the SoT is the “new” database and the old database catches up
⤇

⤇ There’s no need or desire to replay each and every individual change
○

○ we don’t need to capture all changes, but just what changed (i.e. what was inserted, updated, or deleted)
○ always fast-forward to the latest – will need a rolling max of the replication lag to have a truthful estimate

⤇

⤇ If possible, avoid pulling and pushing data via a client
○

○ leverage foreign data wrappers
⤇

⤇ If/when we can’t leverage foreign data wrappers,
○

○ maximize parallelism so as to be able to fill the much greater bandwidth-delay product
⤇

⤇ Iterative looping & chunking ⤇ several python asyncio event loops with multi-processing
vs.

⤇ Declarative transformations, filtering & syncing ⤇ code-generated DML SQL 🖤

DoorDash’s Journey from Aurora Postgres to CRDB

Source DataBase Introspection ⤇ Code
Generation○ Postgres Source Setup DDL

■ add __updated_at column if missing
■ lightweight triggers

● bypass idempotent writes
● bump update timestamp only if client didn’t
● track deletes in outbox

■ foreign servers (destination primary / replicas / CRDB)
■ foreign tables
■ delete outboxes
■ unique constraint violation resolution logs/backups

○
○

○ CRDB Destination Setup
■ table & sequence definitions
■ changefeeds
■ unique constraint violation resolution logs/backups

○ “Hybrid” PgBouncer setup derived automagically from regular source pgbouncer via code generation

○ Postgres Destination Setup DDL
■ table & sequence definitions
■ lightweight triggers

● bypass idempotent writes
● bump update timestamp only if client didn’t
● track deletes in outbox

■ foreign servers (source replicas)
■ foreign tables
■ delete outboxes
■ unique constraint violation resolution logs/backups

DoorDash’s Journey from Aurora Postgres to CRDB

Runtime Behavior 1/2
Generate DML SQL that (optionally) accounts for:

❖ Changes in schema and required data transformations
❖

❖ Changes in primary key
❖

❖ Desired constraint to upsert by
❖

❖ Any desired filtering
 ⚠ careful about cardinality if not supported by appropriate index!

❖

❖ Desired behavior
○ only clobber if more recent
○ only clobber if missing / just fill the gaps along the desired constraint
○ never clobber / just insert rows that do not violate any constraint

⤇ useful to speed-up resolution
○ always clobber / repave
○ just compare the two databases for consistency

DoorDash’s Journey from Aurora Postgres to CRDB

Schema Transformations

DoorDash’s Journey from Aurora Postgres to CRDB

Schema Transformations

DoorDash’s Journey from Aurora Postgres to CRDB

Schema Transformations

DoorDash’s Journey from Aurora Postgres to CRDB

Schema Transformations
SELECT
 COALESCE(
 s2m.merchant_id,
 s2m.merchant_id,
 0),
 ...
FROM store s
LEFT JOIN lookup_store2merchant s2m
ON s.store_id = s2m.store_id
WHERE ...;

INSERT INTO store(
 merchant_id,
 store_id,
 ...)
VALUES ...;

DoorDash’s Journey from Aurora Postgres to CRDB

Runtime Behavior 2/2
Iteratively issue DML SQL against far-apart chunks of:

❖ range key / circular key (i.e. random integer or UUID) / timestamp (i.e. created_at or updated_at).
○ all mapped to integers for simplicity to keep a single, coherent implementation

❖

❖ deletes captured in delete outbox
❖

❖ primary keys from changefeed

If unable to SET session_replication_role = 'replica', catch & resolve constraint violations automatically as you go.

Perform careful checkpointing, so as to be able to pause and resume the initial import.

Keep catching up after initial import.
⚠ careful with high watermarks: account for the latency between a write and its commit!

Finally, cut the source of truth over!

DoorDash’s Journey from Aurora Postgres to CRDB

Table Extraction to (Aurora) postgres: before cutover

DoorDash’s Journey from Aurora Postgres to CRDB

Table Extraction to (Aurora) postgres: after cutover

DoorDash’s Journey from Aurora Postgres to CRDB

Table Extraction to (Aurora) postgres: after cutover

DoorDash’s Journey from Aurora Postgres to CRDB

Table Extraction to (Aurora) postgres: after cutover

DoorDash’s Journey from Aurora Postgres to CRDB

Table Extraction to (Aurora) postgres: before revert

DoorDash’s Journey from Aurora Postgres to CRDB

Table Extraction to (Aurora) postgres: before revert

DoorDash’s Journey from Aurora Postgres to CRDB

Table Extraction to (Aurora) postgres: before revert

DoorDash’s Journey from Aurora Postgres to CRDB

Table Extraction to (Aurora) postgres: after revert

DoorDash’s Journey from Aurora Postgres to CRDB

 before cutoverForklift Extraction to CRDB:

DoorDash’s Journey from Aurora Postgres to CRDB

Forklift Extraction to CRDB: cutover

DoorDash’s Journey from Aurora Postgres to CRDB

Forklift Extraction to CRDB: after cutover

DoorDash’s Journey from Aurora Postgres to CRDB

Forklift Extraction to CRDB: before revert

DoorDash’s Journey from Aurora Postgres to CRDB

Forklift Extraction to CRDB: revert

DoorDash’s Journey from Aurora Postgres to CRDB

Forklift Extraction to CRDB: after revert

44

This Italian neo-realist film is really long.
Can it be done already?

