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Survival strategy

❖

Whack-a-mole

❖ Do not block microservices extractions

❖ Vertical federation
➢ extract tables to separate Aurora clusters 

❖ Horizontal sharding
➢ migrate to CockroachDB
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DoorDash’s Journey from Aurora Postgres to CRDB

Wake-up call: Friday April 17th 2020

⤇ On 2020/04/17 MainDB peaked at 1.636 MQPS,
leading to hours of downtime

Ain’t no rest for the wicked
⤇ Gained some quick headroom,

then hacked together an extraction tool prototype, ready by end of April

⤇ Made 5 attempts at the first database extraction (Identity),
4 reverted, 1 successful on 2020/05/22

⤇ In the 33 days since then, we extracted 7 databases & 54 tables!!!
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A collection of tools
aurora_extract
└── tools
                  ├── audit_bigint
                  ├── audit_roles
                  ├── backfill
                  │            ├── args
                  │            ├── base
                  │            ├── crdb
                  │            │            ├── changefeed
                  │            │            └── consumer
                  │            ├── global
                  │            ├── gui
                  │            ├── intercom
                  │            │            ├── intercom
                  │            │            └── proto
                  │            ├── main
                  │            ├── postgres
                  │            │            ├── base
                  │            │            └── table_progress
                  │            ├── switchover
                  │            └── worker
                  ├── consistency_checker
                  ├── compare_tables
                  ├── introspection & SQL code generator
                  └── kafka_tailer

Motivation
traditional table ExtractioN

Required changes in EACH CLIENT
several engineers x 6 months
Backfill + Syncing

via double writes + double reads
INCREASED DATABASE LOAD

Not haltable & resumable
labor intensive

ERROR PRONE
Led to inconsistencies difficult to reconcile

TIGHTLY COUPLED SYNCHRONOUS PUSH MODEL
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Motivation
BIGINT UPGRADES

Required TRIGGERS
Lead to several lock pileups

Backfill + Syncing
via aforementioned TRIGGERS

INCREASED DATABASE LOAD
Not haltable & resumable

labor intensive
ERROR PRONE

ATOMIC SWAP WAS OFTEN IMPEDED BY TRIGGERS
TIGHTLY COUPLED SYNCHRONOUS PUSH MODEL
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A collection of tools
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Motivation
RDS UPGRADES

Far from hitless
Lead to prolonged outages

CLICK & PRAY

9.5⤇9.6 ⤇10⤇11⤇12 
One major version at a time

RDS⤇Aurora
One extra step to go from plain RDS to RDS Aurora
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Motivation
CRDB EXTRACTIONS

High odds a revert might be required
NO (in-house) «Prior Art»
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Philosophy:                   Invest into reusable tools that would automate all of the most tricky bits

⤇ Minimize labor, never go through the same effort again, multiply the velocity at which we can proceed

⤇ Constantly improve and enhance the tool, invest on it and commoditize it via autotuning so any engineer can just fire it up

⤇ Provide a convenient UI that holds your hand during the operation and allows to edit the generated SQL

⤇ Add safeguards and autotuning, minimize the opportunities for human error

⤇ Allow for emergency revert in as few clicks as possible

⤇ Safely operate over production databases, both source and destination
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traditional migration Pitfalls
⤇ Aurora CDC: logical replication, 40% overhead on single primary

not available on 9.6 ⤇ tail changes directly from tables
exposes to the danger of OOM killer 

⤇ Triggers (for migrations) or Double Writes (for extractions)
synchronous and tightly coupled, ⤇ poll instead of push
work can’t be suspended and resumed as needed

⤇ Destination CPU overload & Aurora replica lag ⤇ feedback loop and PID controller
⤇ load balance writes across cluster

Source contention and CPU oveload ⤇ load balance reads across read replicas
aurora_replica_status() &
crdb_internal.kv_node_status &
show ranges

⤇ Heavy vacuuming or downtime due to transaction wraparound ⤇ auto-tunable batch size

⤇ Page buffer contention (Aurora) / hopping hotspots (CRDB) ⤇ spread out batches/distant extents

⤇ High CRDB commit latency  ⤇ large bandwidth-delay product ⤇ fill BDP via massive parallelism



DoorDash’s Journey from Aurora Postgres to CRDB

Keep It Simple Stupid!
⤇ At any point in time, have a clear Source of Truth

○

○ before the extraction, the SoT is the “old” database and the new database catches up
○

○ after the extraction, the SoT is the “new” database and the old database catches up
⤇

⤇ There’s no need or desire to replay each and every individual change
○

○ we don’t need to capture all changes, but just what changed (i.e. what was inserted, updated, or deleted)
○ always fast-forward to the latest – will need a rolling max of the replication lag to have a truthful estimate

⤇

⤇ If possible, avoid pulling and pushing data via a client
○

○ leverage foreign data wrappers
⤇

⤇ If/when we can’t leverage foreign data wrappers,
○

○ maximize parallelism so as to be able to fill the much greater bandwidth-delay product
⤇

⤇ Iterative looping & chunking ⤇ several python asyncio event loops with multi-processing
vs.

⤇ Declarative transformations, filtering & syncing ⤇ code-generated DML SQL 🖤
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Source DataBase Introspection ⤇ Code 
Generation○ Postgres Source Setup DDL

■ add __updated_at column if missing
■ lightweight triggers

● bypass idempotent writes
● bump update timestamp only if client didn’t
● track deletes in outbox

■ foreign servers (destination primary / replicas / CRDB)
■ foreign tables
■ delete outboxes
■ unique constraint violation resolution logs/backups

○
○

○ CRDB Destination Setup
■ table & sequence definitions
■ changefeeds
■ unique constraint violation resolution logs/backups

○ “Hybrid” PgBouncer setup derived automagically from regular source pgbouncer via code generation

○ Postgres Destination Setup DDL
■ table & sequence definitions
■ lightweight triggers

● bypass idempotent writes
● bump update timestamp only if client didn’t
● track deletes in outbox

■ foreign servers (source replicas)
■ foreign tables
■ delete outboxes
■ unique constraint violation resolution logs/backups
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Runtime Behavior 1/2
Generate DML SQL that (optionally) accounts for:

❖ Changes in schema and required data transformations
❖

❖ Changes in primary key
❖

❖ Desired constraint to upsert by
❖

❖ Any desired filtering
 ⚠ careful about cardinality if not supported by appropriate index!

❖

❖ Desired behavior
○ only clobber if more recent
○ only clobber if missing / just fill the gaps along the desired constraint
○ never clobber / just insert rows that do not violate any constraint

⤇ useful to speed-up resolution
○ always clobber / repave
○ just compare the two databases for consistency
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Schema Transformations
SELECT
  COALESCE(
    s2m.merchant_id,
    s2m.merchant_id,
    0),
  ...
FROM store s
LEFT JOIN lookup_store2merchant s2m
ON s.store_id = s2m.store_id
WHERE ...;

INSERT INTO store(
  merchant_id,
  store_id,
  ...)
VALUES ...;
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Runtime Behavior 2/2
Iteratively issue DML SQL against far-apart chunks of:

❖ range key / circular key (i.e. random integer or UUID) / timestamp (i.e. created_at or updated_at).
○ all mapped to integers for simplicity to keep a single, coherent implementation

❖

❖ deletes captured in delete outbox
❖

❖ primary keys from changefeed

If unable to SET session_replication_role = 'replica', catch & resolve constraint violations automatically as you go.

Perform careful checkpointing, so as to be able to pause and resume the initial import.

Keep catching up after initial import.
⚠ careful with high watermarks: account for the latency between a write and its commit! 

Finally, cut the source of truth over!
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Table Extraction to (Aurora) postgres:                                                            before cutover
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                                                            before cutoverForklift Extraction to CRDB:
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Forklift Extraction to CRDB:                                                                      cutover
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Forklift Extraction to CRDB:                                                              after cutover
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Forklift Extraction to CRDB:                                                            before revert
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Forklift Extraction to CRDB:                                                                      revert
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Forklift Extraction to CRDB:                                                              after revert
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This Italian neo-realist film is really long.
Can it be done already?


